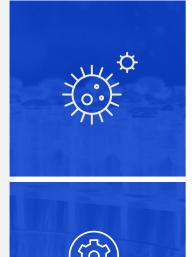


Revealing superbugs through cobas omni Utility Channel The *Candida auris* example

Ashley Emmons, MS Molecular Scientific Liaison Roche Diagnostics

2024 | Medical & Scientific Affairs

Disclosures


Ashley Emmons is an employee of Roche Diagnostics Corporation functioning as a **Molecular Scientific Liaison** within the non-commercial division of Medical & Scientific Affairs.

Data presented is intended for educational use to provide the participant with scientific, evidence-based information in compliance with FDA guidelines.

All trademarks, trade names, images, or logos mentioned or used herein are the property of their respective owners and are not used for purposes of promotion or as an indication of affiliation with the provider of any particular good or service.

Describe the Candida auris emerging health threat

Learning Objectives

Recognize the challenges associated with addressing emerging health threats

Understand how the cobas omni Utility Channel can be used by laboratorians to respond to evolving testing needs and pathogens *Candida auris* Background

Candida auris

Overview

C. auris is an emerging fungus of concern for 3 main reasons It is often multi-drug resistant with some strains resistant to all three available classes of antifungals used to treat *Candida* species

It is challenging to identify with standard laboratory methods and misidentification can lead to inappropriate management

Outbreaks in healthcare settings have occurred and it is critical to rapidly identify *C. auris* so special precautions can be taken to stop it's spread

Candida auris

Basic facts

- First described as a novel Candida species in 2009
 - Isolated from the external ear canal of a patient in a Japanese hospital
- Rapid global spread observed after 2009
- Budding yeast with cells that may be single, in pairs, or in groups
 - Ovoid, ellipsoidal to elongate 2.5-5 microns rarely forms hyphae or pseudohyphae, does not form germ tubes
- Growth varies depending on culture medium
 - Can grow at 40°C
- Genetic analysis demonstrates 4 distinct geographical clades with a potential 5th
 - Genetic differences suggest independent emergence of different clades
- May survive on moist or dry surfaces for 7 days and might remain viable up to 4 weeks
- Thrives on skin and forms a multi-layer biofilm

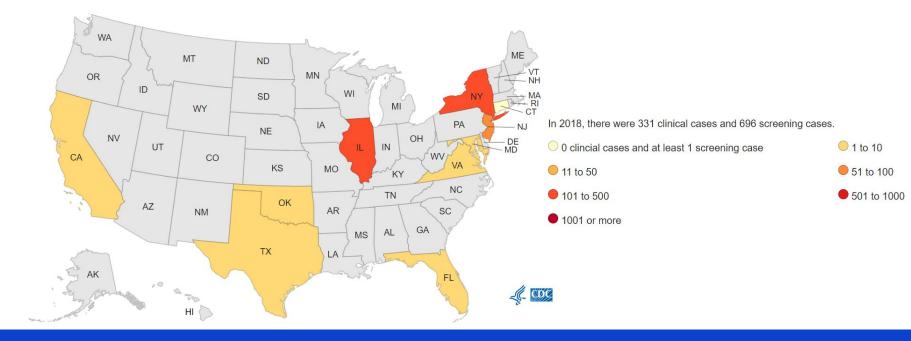
C. auris can be misidentified

as a number of different organisms including other *Candida* species when using traditional phenotypic methods for yeast identification

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)

can differentiate *C. auris* from other *Candida* species, but not all the included device reference databases allow for detection

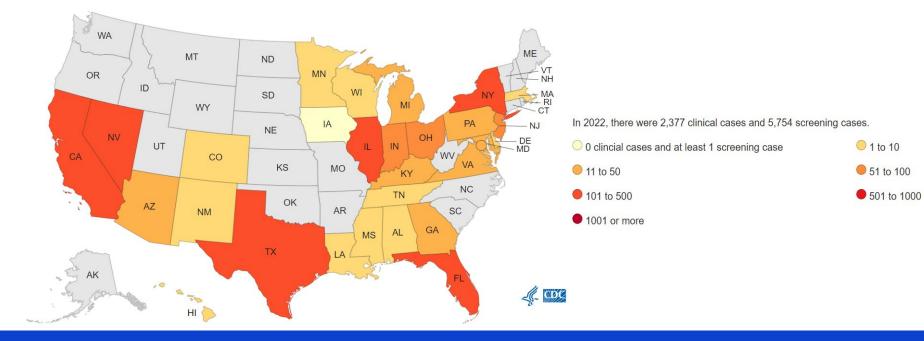
Molecular Methods


- Sequencing (D1-D2 region of the 28s rDNA or the Internal Transcribed Region of rDNA)
- FDA-approved pathogen panels for positive blood culture identification (GenMark and BioFire)
- Currently **no FDA-approved tests** for colonization swabs but various PCR methods have been developed and are available in the scientific literature including a CDC protocol

Note:

Healthcare facilities or laboratories that suspect they have a patient with *C. auris* infection should contact state or local public health authorities and CDC (candidaauris@cdc.gov) immediately for guidance

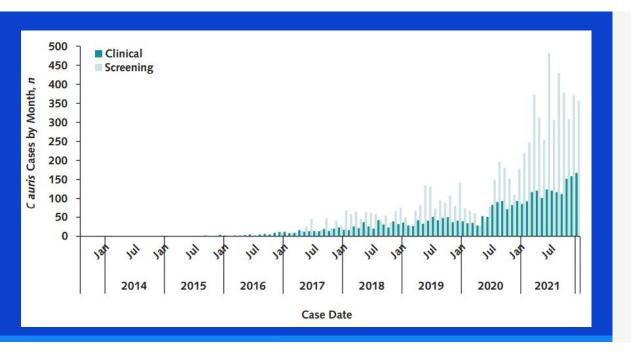
Candida auris tracking data - 2018 Made nationally notifiable in 2018



C. auris is reportable in 22 states as of September 2023

https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html https://www.cdc.gov/fungal/fungal-disease-reporting-table.htm

Candida auris tracking data - 2022 Made nationally notifiable in 2018



C. auris is reportable in 22 states as of September 2023

https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html https://www.cdc.gov/fungal/fungal-disease-reporting-table.htm

Worsening spread of Candida auris in the United States 2019 to 2021

- Year over year increase in clinical cases in **2019** was **44%** (from 330-476)
- Year over year increase in clinical cases in **2020** was **59%**

(from 476-756)

• Year over year increase in clinical cases in **2021** was **95%** (756-1,471)

Worsening spread of Candida auris in the United States 2019 to 2021

Table. Percentage Resistance of *Candida auris* Isolates Tested by the Antimicrobial Resistance Laboratory Network, 2018 to 2020*

Year or Region	Azoles†	Amphotericin B‡	Echinocandins
Year			
2018 (n = 463)	372 (80.3)	151 (32.6)	2 (0.4)
2019 (n = 1006)	787 (78.2)	242 (24.1)	14 (1.4)
2020 (<i>n</i> = 1294)	1109 (85.7)	331 (25.6)	15 (1.2)
Region Mid-Atlantic (<i>n</i> = 135)	133 (98.5)	115 (85.2)	4 (3.0)
Midwest ($n = 156$)	17 (10.9)	2 (1.4)	0 (0.0)
Mountain $(n = 25)$	24 (96.0)	1 (4.0)	0 (0.0)
Northeast $(n = 1051)$	1046 (99.5)	468 (44.5)	22 (2.1)
Southeast $(n = 172)$	170 (99.4)	9 (5.2)	0 (0.0)
West $(n = 556)$	553 (99.5)	17 (3.1)	1 (0.2)

* Data are numbers (percentages). Numbers are based on records with any minimum inhibitory concentrations (MICs). About 1% of all records for all times were missing MICs for 1 or 2 drug classes.

+ The tentative MIC breakpoint for fluconazole was ≥32 mcg/mL.

 \ddagger The tentative MIC breakpoint for amphotericin B was ≥2 mcg/mL.

§ The tentative MIC breakpoint for echinocandins was ≥4 mcg/mL (anidulafungin or micafungin).

|| The Central region is excluded because of the small number of isolates.

Susceptibility patterns vary by geography due to local circulation of specific clades

In **2021**, **7** patients with pan-resistant isolates and **19** other patients with echinocandin-resistant isolates were detected compared with **6** and **3**, respectively, in 2020

Treatment/management of invasive infections

Echinocandins are recommended for initial therapy

Dose information for adults & children ≥ 2 months of age

Echinocandin drug	Adult dosing	Pediatric dosing
Anidulafungin	Loading dose 200 mg IV, then 100 mg IV daily	Not approved for use in children
Caspofungin	Loading dose 70 mg IV, then 50 mg IV daily	Loading dose 70 mg/m²/day IV, then 50 mg/m²/day IV (based on body surface)
Micafungin	100 mg IV daily	2 mg/kg/day IV with option to increase to 4 mg/kg/day IV in children at least 40 kg

Even after invasive infection treatment, patients generally remain colonized with *C. auris* for long periods, possibly indefinitely

Management: non-invasive, non sterile body sites

Urine, external ear wounds, respiratory specimens, skin colonization, etc.

If there is no evidence of infection, treatment is *not recommended*

Infection control measures should be used for all patients with *C*. *auris regardless* of specimen source

- Colonized patients are at risk for developing invasive infections and require additional prevention measures
 - Appropriate medical device care (such as strict adherence to recommended central venous catheter and urinary catheter insertion and maintenance practices and meticulous care of tracheostomy sites)
 - Surgical Site Procedures (meticulous skin preparation procedures should be followed to prevent infection)
 - Antibiotic Stewardship

Infection & prevention control

Primary methods in healthcare settings

• Hand hygiene

- Alcohol-based hand sanitizer, etc.
- Transmission
 - Based precautions (contact precautions or enhanced barrier precautions similar to those taken for other MDROs)

• Room/patient placement

- Consideration for private rooms or cohorting in shared rooms (consider dedicated healthcare personnel)
- Follow recommended practices to reduce transmission in shared rooms
- CDC recommends continued contact precautions or barrier precautions for length of stay
- Routine reassessment of colonization is not recommended
- No specific decolonization procedure is known at this time

The emerging health threat challenge

Challenges addressing emerging infectious diseases

Limited understanding of pathogen

Limited or lack of accepted, well-characterized samples

Limited access to positive sample material

Lack of publications describing identification approaches (primer/probe designs)

No standards, controls, reagents

No FDA-approved/cleared diagnostic tests

No high-throughput testing methods to facilitate high testing demand

Candida auris as an example

C. auris can be misidentified

as a number of different organisms including other *Candida* species when using traditional phenotypic methods for yeast identification

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)

can differentiate *C. auris* from other *Candida* species, but not all the included device reference databases allow for detection

Molecular Methods

- Sequencing (D1-D2 region of the 28s rDNA or the Internal Transcribed Region of rDNA)
- FDA-approved pathogen panels for positive blood culture identification (GenMark and BioFire)
- Currently no FDA-approved tests for colonization swabs but various PCR methods have been developed and are available in the scientific literature including a CDC protocol

Note:

Healthcare facilities or laboratories that suspect they have a patient with *C. auris* infection should contact state or local public health authorities and CDC (candidaauris@cdc.gov) immediately for guidance

Candida auris CDC assay design

9.0 Primer/Probe Sequences

9.1 C. auris Primers/Probe: V2424F (CAURF), 5'-CAG ACG TGA ATC ATC GAA TCT-3' V2426 (CAURR), 5'-TTT CGT GCA AGC TGT AAT TT-3' V2425P (CAURP), 5'-/56-carboxyfluorescein (FAM)/AAT CTT CGC /ZEN /GGT GGC GTT GCA TTC A /3IABkFQ/-3'

3IABkFQ: Iowa Black® FQ

ZEN/Iowa Black FQ is a Double-Quenched Probe, which provides superior performance compared to traditional singlequenched probes

- Assay requires manual steps (pipetting, plate setup, etc)
- Low/Med throughput option
- Can the CDC assay be modified to fit the cobas omni Utility Channel for a more automated, higher throughput option?

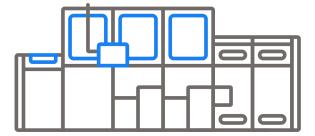
cobas omni Utility Channel

cobas 5800

Roche

cobas omni Utility Channel

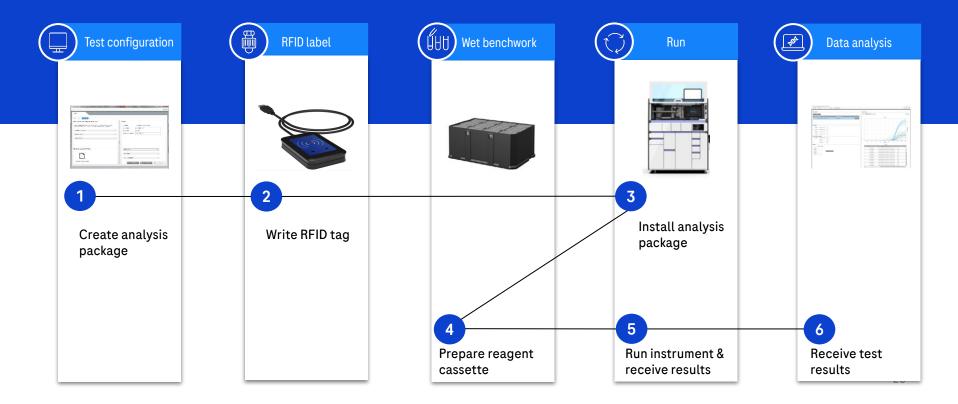
Allows labs to run optimized LDTs with the same technology used to run IVDs Same master mix components (except primers/probes) Same automated extraction technology Same automated amplification technology


The cobas[®] x800 family

cobas® 5800 system Up to 144 tests/shift*

cobas® 8800 system Up to 1056 tests/shift*

Example traditional workflow



Example cobas omni Utility Channel workflow

cobas omni Utility Channel Workflow

cobas omni Utility Channel

Requirements

- Computer for omni software
- RFID reader/writer device (TWN3 Legic NFC USB)
- **cobas omni** Utility Channel Reagent Kit, 192T + Primer/Probes
- **cobas**[®] Buffer Negative Control Kit
- cobas omni Optimization Kit

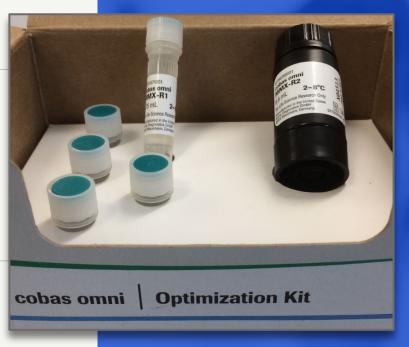
Reagent cassette

Proteinase Internal Control Elution Buffer (EB) - Tris base buffer LDT primers/probes mixed with MMX-R2 Master Mix Reagent 1 (MMX-R1)

cobas omni Optimization Kit

Kit Configuration

Components:


Master Mix Reagent 1

Manganese acetate Potassium hydroxide < 0.1% Sodium azide

Master Mix Reagent 2 Buffer

Polymerase AmpErase Nucleotides IC primer/probes

Benefit: Optimize on a generic thermal cycler during primary test development using the same chemistries you will use on the family of cobas[®] x800 instruments.

Design primers & probes

Note: Only the default master mix can be used for PCR reactions with the utility channel. Therefore, the majority of assay design is dependent on identifying primers and probes that are compatible with the master mix, or that can be optimized to become compatible.

cobas omni Utility Channel basics

Interna	l control

The internal control of cobas omni Utility Channel is intended to be used as process control. Its non-human RNA-sequence was selected to minimize interference with primers and probes specific for human, viral or bacterial targets

Channels	Common fluorophores	Common dark quenchers	Excitation wavelength/ width [nm]	Emission wavelength/ width [nm]
1	• Atto 425/Cyan 500	 ZENTM/lowa Black[®] FQ BHQ[®]-1 	435/25	470/20
2	 6-FAM FAM-dT	 ZENTM/lowa Black[®] FQ BHQ[®]-1 BHQ[®]-2 	495/10	521/10
3	 HEX VIC Cal Fluor[®] Orange 560 SIMA-dT 	 ZENTM/lowa Black[®] FQ BHQ[®]-1 BHQ[®]-2 	540/10	580/20
4	 Cal Fluor[®] Red 635 LC Red[®] 640 	 TAOTM/lowa Black[®] FQ BHQ[®]-1 BHQ[®]-2 	610/20	645/20
5	Reserved for internal control	I (included in the reagent cass	ette) ^(a)	

General primer sequence characteristics

Amplicon size 50 to 250 bp

Primer length 18 to 25 bp Those which do not contain internal secondary structure, are not complementary to each other at their 3' ends and are not self-complementary

Avoid mismatches close to the 3' end Avoid having a "T" at the 3' end

3' methylation (last base or second to the last base) can help minimize primer-dimer formation

Have a GC content of 35%-65% Avoid runs of identical nucleotides (i.e. 4+ consecutive residues such as CCCC or GGGG)

Have a melting temperature of around 60°C to 70°C that is at least 3°C to 5°C higher than the annealing temperature allowing annealing to occur between 55°C and 65°C

Candida auris CDC primer assessment

https://www.cdc.gov/fungal/lab-professionals/Real-tim e-PCR-based-Id-C-auris.html

Category	Specificiation	Details	Ok?
Amplicon size	50 to 250 bp	135 bp	•
Primer Length	18 to 25 bp	21/20 bp	•
	GC content is 35-65%	43%/35%	•
	Primers end on A or C	no/yes	?
	No complementarity to each other at their 3' ends	yes	•
Composition	No internal secondary structures	yes	•
	No runs of 4+ identical nucleotides	yes	•
	60-70°C and \geq 3-5°C higher than annealing temperature	52.4/50.8	
	Fwd: 5'-CAGACGTGAATCATCGAATCT-3'OH Rev: 5'-TTTCGTGCAAGCTGTAATTT-3'OH		

Candida auris CDC primer assessment

Table 1: Comparison between methylated and unmethylated primers - cobas[®] 6800

			1000 CFU/mL				
Input Vol. (uL)	Positive Replicates	Average Ct Unmethylated	Positive Replicates	Average Ct Methylated	∆Ct	Average ∆Ct	
150	2/2	36.69	2/2	35.05	1.64		
200	2/2	35.09	2/2	34.5	0.59	1.38	
350	2/2	34.43	2/2	32.1	2.33	1.50	
500	2/2	34.08	2/2	33.1	0.98		
			100 CFU/mL	1			
Input Vol. (uL)	Positive Replicates	Average Ct Unmethylated	Positive Replicates	Average Ct Methylated	ΔCt	Average ∆Ct	
150	2/2	40.49	2/2	40.57	-0.08		
200	2/2	40.47	2/2	38.19	2.28	1.105	
350	2/2	38.09	2/2	36.96	1.13	1.105	
500	2/2	37.50	2/2	36.4	1.10		

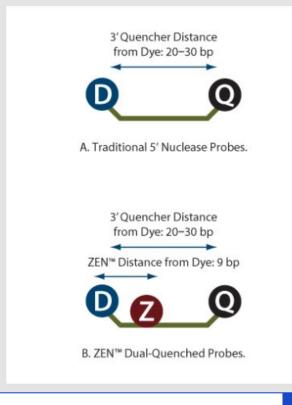
General probe sequence characteristics

Probe length 18 to 30 bp Have a GC content of 45% to 65%

Avoid runs of identical nucleotides (i.e. 4+ consecutive residues such as CCCC or GGGG) Avoid having a "G" at the 5' end

The melting temperature of the probe should always be higher (5°C to 10°C) than the primer

Dark quencher dyes result in better fluorescent signals


Hydrolysis probes with an internal, rather than a 3'- terminal quencher

Candida auris CDC probe assessment

Category	Specificiation	Details	Ok?
Amplicon size	50 to 250 bp	135 bp	•
Primer Length	18 to 30 bp	25 bp	•
	GC content is 45-65%	52%	•
	Avoid having a "G" at the 5'-end	yes	•
Composition	No complementarity to each other at their 3' ends	yes	~
Composition	No internal secondary structures	yes	•
	No runs of 4+ identical nucleotides	yes	•
	5-10°C higher than the primer Tm	63.6°C	•

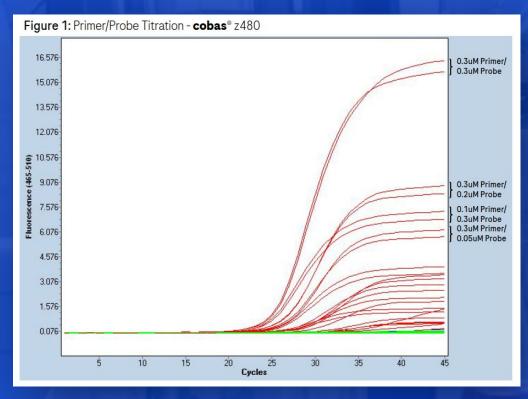
5'-AATCTTCGCGGTGGCGTTGCATTCA-3'OH

Optimization Probe modification

CDC already had an internal quencher in their design

cobas omni Utility Channel: Guidelines for Establishing a PCR-based LDT – User Guide Ve <u>https://www.cdc.gov/fungal/lab-professionals/Real-time-PCR-based-Id-C-auris.html</u>

Titration of primers & probes


Note: Only the default master mix can be used for PCR reactions with the utility channel. Therefore, the majority of assay design is dependent on identifying primers and probes that are compatible with the master mix, or that can be optimized to become compatible.

	Probe	Probe concentration	0.02	0.05	0.1	0.2	0.3	μM
Optimization		Primer concentration (forward and reverse)	<mark>0.3</mark>	0.3	0.3	0.3	0.3	μM
		Serial dilution for o	ptimiza	ation o	f the	pr <mark>obe c</mark>	oncent	ration
Primer/probe								
titration								
	Primer	Primer concentration (forward and reverse)	0.05	0.1	0.2	0.3 0	.4 0.6	μM
		Probe concentration	Opt	imal co	ncen	trations	, <mark>see T</mark> a	able 6
		E Serial dilution for	optimi	zing th	e prin	ner con	centrat	ion

Optimization Primer/probe titration

High-Throughput, Automated Detection of Candida auris on the cobas[®] x800 with the **cobas**° omni Utility Channel

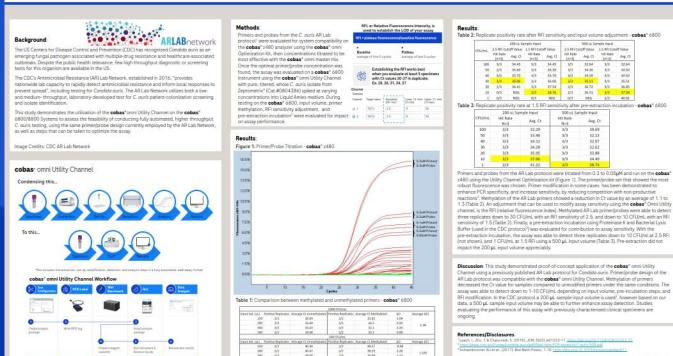
07120

1/3 12.64

3/5 34.30

3/3 34.59

3/8 35.51


3/3 36.85

2/5 40.01

Stephen McCune, Erin Gick, Robin Thomas, Sara J. Blosser

Medical & Scientific Affairs, Roche Diagnostics Corporation, Indianapolis, IN

APHL ID Con, March 13-15, 2023

Emphan McClune, Drin Gick, and Action Thomas are employees of Ractine Diagnostics Corporation. Sons J. Biosson was an employee of Ractine Diagnostics

McCune et al (2023) High-Throughput, Automated Detection of Candida auris on the cobas® x800 with the cobas® omni Utility Channel - APHL ID Con

ColLABorate* – www.collaboratemdx.com

A resource portal for customers

Summary

Candida auris is an emerging multidrug resistant pathogen that can cause a wide range of nosocomial infections and it's prevalence is rapidly growing in the US

Emerging health threats are challenging for laboratories to address as IVD approved/cleared tests are often not available and initial LDT solutions (*if they exist*) are often low throughput and manual

The cobas omni Utility Channel provides a pathway to develop high-throughput, automated LDT assays that can be used to address emerging health threats

Doing now what patients need next

P.A.C.E # 279-014-24

Contact hours: 0.5

Level of instruction: Intermediate

Doing now what patients need next

Sample types

Sample material	Processing volume [µL]
Plasma	200, 350, 500, 850
PreservCyt [®]	400
RCCM	400
Serum	200, 500, 850
Swab	400
Urine .	850
VTM	400
Whole blood	500
U_Simple sample	150, 200, 350, 500, 850
U_Sample with swab	400
U_Alcohol-based sample	400

Pipetting profiles

Notes from the Field

- Predilute <u>whole blood</u> (ex. 1:7 in cobas[®] PCR Media)
- Dissolve stool samples (ex. in 2 mL PCR Media or PBS)

Tip: When using sample types outside of the above list, extra caution should be used to monitor performance of the system and confirm results. Special attention should be taken with sample types that could impact pipetting such as viscous or clotty samples.

Sample types

Target	Sample type	Reference
FluA/B/RSV	Contrived swabs/simulated specimen	Hein, R et. al. AMP 2018 poster.
T.vag	PreservCyt	Hein, R et. al. CVS 2018 Poster.
HSV 1/2 & VZV	Contrived swabs/simulated specimen	Hein, R et. al. CVS 2018 Poster.
Factor II/V	EDTA-whole blood	Neumann et. al. Poster
BKV	Serum	Hasan et. al. Journal of Virological Methods. 2016
C.diff	Stool	Eigner et. al. Journal of Microbiological Methods. 2020
BKV	EDTA-plasma, serum and urine	Fritzsche et. al. Journal of Virological Methods. 2021
HDV	Serum	Pfluger et. al. JHEP reports. 2021
FluA/B/RSV	Spiked UTM	Eigner et. al. Journal of Virological Methods. 2019
SARS-CoV-2	Oropharyngeal and nasopharyngeal swabs in UTM	Norz <u>et.al</u> . Diagnostics.2021
HSV/VZV	EDTA-plasma and CSF	Lutgehetmann <u>et.al</u> . Poster
Zika virus	Plasma and urine	Boujnan et.al. Donor Infectious Disease Testing. 2018.